

Department of genetics

## Lude Franke > Integrating different omics data

Department of Genetics, UMC Groningen

## Amplifier can change many aspects of music





## 800 'transcriptional components': Component I - 50





**Component 800** 









#### Three different species







Build profile for a pathway (GO: Type I interferon-mediated signaling pathway) Assess each of the 2,200 transcriptional components (TCs), perform T-Test per TC:





Build profile for a pathway (GO: Type I interferon-mediated signaling pathway) Assess each of the 2,200 transcriptional components (TCs), perform T-Test per TC:





Build profile for a pathway (GO: Type I interferon-mediated signaling pathway) Assess each of the 2,200 transcriptional components (TCs), perform T-Test per TC:







## Example:TP53

| Gene Network                                                                                                                                                         |                        |              |              |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|--------------|-----------------|
| 60                                                                                                                                                                   |                        |              |              | method<br>about |
| TP53 Tumor protein p53                                                                                                                                               |                        |              |              |                 |
| Predicted function Tissues Network                                                                                                                                   |                        |              |              |                 |
| GO telegical process GO cellular component GO molecular function KEGG BIO                                                                                            | Carta Read             | tome         | FBS MicroRNA |                 |
| Term                                                                                                                                                                 | P-value D              | Direction An | notated      |                 |
| signal transduction by p53 class mediator resulting in induction of apoptosis<br>DNA damage response, signal transduction by p53 class mediator resulting in inducti | 1.25E-17<br>on5.52E-13 | :            | :            |                 |
| response to UV                                                                                                                                                       | 1.68E-11               | +            | +            |                 |
| Induction of apoptosis by intracellular signals<br>DNA damage response, signal transduction resulting in induction of apoptosis                                      | 3.09E-10<br>5.22E-9    | :            | :            |                 |
| positive regulation of axonogenesis                                                                                                                                  | 6.79E-8                | +            | -            |                 |
| nuclear mRNA splicing, via spliceosome<br>RNA splicing, via transesterification reactions with bulged adenosine as nucleophile                                       | 9.37E-8<br>9.37E-8     | :            | 1            |                 |
| RNA splicing, via transesterification reactions                                                                                                                      | 1.888-7                | +            | -            |                 |
| nuclear-transcribed mRNA poly(A) tail shortening                                                                                                                     | 2.628-7                | +            | 1            |                 |
| mRNA catabolic process                                                                                                                                               | 5.218-7                | ÷            | 1            |                 |
| induction of apoptosis                                                                                                                                               | 8.97E-7                | +            | +            |                 |
| induction of programmed cell death<br>positive regulation of protein deacetylation                                                                                   | 9.128-7                | :            | :            |                 |
| DNA biosynthetic process                                                                                                                                             | 1.21E-6                | +            | -            |                 |
| nuclear-transcribed mRNA catabolic process<br>serine family amino acid biosynthetic process                                                                          | 1.37E-6<br>1.77E-6     | :            | 1            |                 |
| RNA catabolic process                                                                                                                                                | 1.858-6                | +            |              |                 |
| RNA 3'-end processing                                                                                                                                                | 2.30E-6                | +            | -            |                 |
| Download all predictions for TP53                                                                                                                                    |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
| 6 2005-2012 UNICO Departmen                                                                                                                                          | t of Genetics          |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |
|                                                                                                                                                                      |                        |              |              |                 |

genenetwork.nl/genenetwork

## Example:TP53

| Gene Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ● ●<br>+ ● http://129.125.165.109:808 | 0/GeneNetwork/ | ?gene=tp | Gene Network                |             | C Q* Google |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|----------|-----------------------------|-------------|-------------|--|
| TP53 Tumor protein p53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gene Network                          |                |          |                             |             |             |  |
| Predicted function Tissues Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gar                                   |                |          |                             |             | method      |  |
| GO biological process GO cellular component G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TP53 Tumor protein p53                |                |          |                             |             |             |  |
| Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Predicted function Tissues            | Network        |          |                             |             |             |  |
| DNA damage response, signal transduction by p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                |          |                             |             |             |  |
| response to UV<br>induction of apoptosis by intracellular signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tissue                                | # samples      | AUC      | P-value                     | -           |             |  |
| DNA damage response, signal transduction resumed in the requilition of average and the results of aver | Retinal Pigment Epithelium            | 12             | 0.91     | 8 x 10 <sup>-7</sup>        |             |             |  |
| nuclear mRNA splicing, via spliceosome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Neural Stem Cells                     | 11             | 0.88     | 2 × 10 *                    |             |             |  |
| RNA splicing, via transesterification reactions w<br>RNA splicing, via transesterification reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Umblical vens                         | 113            | 0.86     | 8 × 10 **                   |             |             |  |
| nuclear-transcribed mRNA poly(A) tail shortenin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Astrocytes                            | 12             | 0.84     | 4 x 10 <sup>-5</sup>        |             |             |  |
| mRNA catabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Endothelial Cells                     | 196            | 0.84     | 4 x 10 ***                  |             |             |  |
| induction of apoptosis<br>induction of programmed cell death                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vens                                  | 133            | 0.83     | 5 x 10 ~                    |             |             |  |
| positive regulation of protein deacetylation<br>DNA biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Induced Pluripotent Stem Cells        | 35             | 0.82     | 3 × 10 ***                  |             |             |  |
| nuclear-transcribed mRNA catabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cell Line, Transformed                | 102            | 0.82     | 3 x 10 **                   |             |             |  |
| RNA catabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trophoblasts                          | 11             | 0.82     | 2 × 10 *                    |             |             |  |
| RNA 3'-end processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HEK293 Cells                          | 100            | 0.82     | 4 x 10 <sup>-20</sup>       |             |             |  |
| Download all predictions for TP53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pluripotent Stem Cells                | 47             | 0.78     | 2 x 10 <sup>-11</sup>       |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blood Vessels                         | 171            | 0.77     | 4 x 10 34                   |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Embryoid Bodies                       | 11             | 0.77     | 2 x 10 <sup>-5</sup>        |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HT29 Cells                            | 17             | 0.74     | 8 × 10 <sup>-4</sup>        |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oogres                                | 15             | 0.73     | 2 x 10 <sup>-5</sup>        |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Colon, Sigmoid                        | 27             | 0.72     | 8 x 10 <sup>-3</sup>        |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Biastocyst                            | 14             | 0.71     | 6 x 10 <sup>5</sup>         |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Myocytes, Smooth Muscle               | 141            | 0.71     | 4 x 10 <sup>-10</sup>       |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Muscle Cells                          | 146            | 0.70     | 5 x 10 <sup>-17</sup>       |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Foreskin                              | 69             | 0.70     | 1 × 10'0                    |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Download all tissue data for TP53     |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          | © 2006-2012 UMCG Department | of Genetics |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |          |                             |             |             |  |

genenetwork.nl/genenetwork

## Example:TP53

| ene Network                                                                                          | 00                                |                |           | Cene Network                                                                                               |
|------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|-----------|------------------------------------------------------------------------------------------------------------|
| Car I                                                                                                | 4 > + Mttp://129.125.165.109.808  | 0/GeneNetwork/ | ?gene=tp5 | 3 C Q. Google                                                                                              |
| Tumor protein p53                                                                                    | Gene Network                      |                |           | e o o Cene Network                                                                                         |
| Predicted function Tissues Network                                                                   | Gal                               |                |           |                                                                                                            |
| GO biological process GO cellular component G                                                        | TP53 Tumor protein p63            |                |           | Gene Network                                                                                               |
| Term                                                                                                 | Predicted function Tissues        | Network        |           | Car method                                                                                                 |
| signal transduction by p53 class mediator result<br>DNA damage response, signal transduction by p    |                                   |                |           | TDE2                                                                                                       |
| response to UV<br>induction of aportosis by intracellular signals                                    | Tissue                            | # samples      | AUC       | Tumor protein p53                                                                                          |
| DNA damage response, signal transduction res.                                                        | Retinal Pigment Epithelium        | 12             | 0.91      | Predicted function Tissues Network                                                                         |
| nuclear mRNA splicing, via spliceosome                                                               | Neural Stem Cells                 | 11             | 0.88      |                                                                                                            |
| RNA splicing, via transesterification reactions w<br>RNA splicing, via transesterification reactions | Umbilical Veins                   | 113            | 0.86      | Color genes based on GO biological process 1 93 genes shown Search gene names / Search gene descriptions / |
| nuclear-transcribed mRNA poly(A) tail shortenin                                                      | Astrocytes                        | 12             | 0.84      | DNA damage response, signal transduction by p53 class mediator resulting in induction of apoptosis         |
| mRNA atabolic process                                                                                | Endothelial Cells                 | 196            | 0.84      | signal transduction hv.n53 class media Platry ulting in induction of apoptosis                             |
| induction of apoptosis<br>induction of programmed cell death                                         | Veins                             | 133            | 0.83      | response to UV Mostin PHID2 COB2 (C037)                                                                    |
| positive regulation of protein deacetylation                                                         | Induced Pluripotent Stem Cells    | 35             | 0.82      | DNA damage response, signal transduction resulting in induction of apoptosis                               |
| DNA biosynthetic process<br>nuclear-transcribed mRNA catabolic process                               | Cell Line, Transformed            | 102            | 0.82      | WE THEREFOR NONO                                                                                           |
| serine family amino acid biosynthetic process                                                        | Trophoblasts                      | 11             | 0.82      | - strong positive coexpression                                                                             |
| RNA 3'-end processing                                                                                | HEK293 Cells                      | 100            | 0.82      | PPL3 SERPINES ARDCA AP2A1                                                                                  |
| Download all predictions for TP53                                                                    | Pluripotent Stem Cells            | 47             | 0.78      | HNRNPHI SNRNPHO                                                                                            |
|                                                                                                      | Blood Vessels                     | 171            | 0.77      | TRADE SYCP                                                                                                 |
|                                                                                                      | Embryoid Bodies                   | 11             | 0.77      | DCAF15                                                                                                     |
|                                                                                                      | HT29 Cells                        | 17             | 0.74      |                                                                                                            |
|                                                                                                      | Oocytes                           | 15             | 0.73      | RPS27L PDD SEC31A EDA2R SHC1 SHC1                                                                          |
|                                                                                                      | Colon, Sigmoid                    | 27             | 0.72      | UBL7 WAG                                                                                                   |
|                                                                                                      | Blastocyst                        | 14             | 0.71      | HOROL THOOS AMAS                                                                                           |
|                                                                                                      | Myocytes, Smooth Muscle           | 141            | 0.71      |                                                                                                            |
|                                                                                                      | Muscle Cells                      | 146            | 0.70      | CONCL STRAW SEPTI CALL                                                                                     |
|                                                                                                      | Foreskin                          | 69             | 0.70      | PCX0L3 RP11-134G8.8 GMP                                                                                    |
|                                                                                                      |                                   |                |           | UBA1 NPS72                                                                                                 |
|                                                                                                      | Download all tissue data for TP53 |                |           | MDM2 CDK4 CDKNIA MAZ ANKMYI                                                                                |
|                                                                                                      |                                   |                | -         | TRM22 00FC28                                                                                               |
|                                                                                                      |                                   |                |           | ASOCI MAGEBZ                                                                                               |
|                                                                                                      |                                   |                |           | PSATT PHLDA3 AES NTKB2 INF28P1                                                                             |
|                                                                                                      |                                   |                |           | RAVERT AAVERT                                                                                              |
|                                                                                                      |                                   |                |           | PRADC1 HNRNPD C20x427 KDM38 (RELA)                                                                         |
|                                                                                                      |                                   |                |           |                                                                                                            |
|                                                                                                      |                                   |                |           | SF3A2 CALB1 CONTA                                                                                          |
|                                                                                                      |                                   |                |           | GOPTS SCH8 JUND HYOUT                                                                                      |
|                                                                                                      |                                   |                |           |                                                                                                            |
|                                                                                                      |                                   |                |           | LSM2 PUX2 FRAME                                                                                            |
|                                                                                                      |                                   |                |           |                                                                                                            |

genenetwork.nl/genenetwork

## Does it work? Combining GeneNetwork and eQTLs

## VEL blood group, gene unknown

- GWAS on red blood cell traits (Van der Harst et al, Nature 2012)

ARTICLE

## nature

# Seventy-five genetic loci influencing the human red blood cell

- In one locus the SNP strongly affected gene expression of SMIMT, a gene without known function:



## Does it work? Combining GeneNetwork and eQTLs

## VEL blood group, SMIM1 gene

- Most significantly predicted GeneNetwork function: 'Hemoglobin metabolic process' ( $P = 10^{-16}$ )
- Homozygous SMIM1 17bp deletion found in 63 out of 69 individual (Mutation frequency <1% in entire population)
- Zebrafish knock-down: reduced number of red blood cells



#### Control fish



#### SMIM1 knock-down

## Components 51 - 800

Component 1



Component 800

## Components 51 - 800

Component 1



Component 800

## Some component show weird behaviour

TC 1: No cytogenetic effect, zero autocorrelation

1 2 3 4 5 6 7 8 9 10 11 P2 P3 P4 P5 P6 P2 20 21 22

## Some component show weird behaviour

TC 165: Strong cytogenetic effects, high autocorrelation

TC 1: No cytogenetic effect, zero autocorrelation



#### Some component show weird behaviour

TC 165: Strong cytogenetic effects, high autocorrelation



TC 1: No cytogenetic effect, zero autocorrelation



#### Identify non-cancer, physiological TCs



Chromosome

Down Syndrome patient: dup 21

## Detection cytogenetic aberration in expression data



#### Identifying five chromosome duplications



## Identifying five chromosome duplications





## Comparison of arrayCGH and cytogenetic RNA profiles











#### Amount of cytogenetic aberrations





cdc

Percentage of land filled with















20%





















20%

80%

- Text mining analysis on Affymetrix U133 Plus 2.0 platform (54,000 probesets): 7,319 cell line samples
- Find additional samples that have been missed by text mining but which look similar to cell lines. Can we do this?
- Strategy: Perform for every component a T-Test, and denote T value per component. We have 777 components, and thus have a vector of 777 T values. Subsequently we correlate all 37,427 samples with this profile.



Correlation with cell-line Z-score profile  $\rightarrow$ 

#### Identify related individuals

## Probeset, informative for relating genetically identical samples:



Expression Cell-type / Tissue 1  $\rightarrow$ 

## Probeset, **not** informative for relating genetically identical samples:



Extending upon sample mix-up identification method: Westra et al, Bioinformatics 2011

## Identify related individuals



Correlation between pairs of sample hybridizations →

## Combinations of dels/dups in many tumors

Profile most often identified in 16,172 cancer samples:







Ovarian tumor (GSM249825):

## Combinations of dels/dups in many tumors

Profile most often identified in 16,172 cancer samples:









## Trans-eQTL mapping in 16,172 samples



Reactome

## Strong dependencies exist within cancers



Cancer development

- Reanalysis of publicly available data can reveal new insight into transcriptional regulation and genomic instability in cancer
- Many avenues for bioinformaticians and statistical geneticists!