

Lude Franke > DNA microarrays: Genome-wide association studies

Department of Genetics, UMC Groningen, the Netherlands

Down's syndrome:

- First described in 1866 by John Langdon Down
 - Prevalence: I / 700
 - Impairment in cognition & physical growth
 - Particular set of (facial) characteristics
- Cause found in 1959: trisomy chromosome 21

Lude°Franke

Down's syndrome:

Why do Down's syndrome children get sick? They do not miss any genetic material!

Can it be that an extra chromosome 21 results in increased gene expression of chromosome 21 genes?

Could that cause Down's syndrome?

But what about chromosome X?

- Males: one copy chromosome X
- Females: two copies chromosome X, chromosome X inactivation

Still Poorly understood!

Other diseases due to chromosomal aberrations:

Klinefelter syndromeNormal chr. I - 22, but XXYTurner syndromeChromosome X missing (X0)Patau syndromeTrisomy chromosome I 3Edwards syndromeTrisomy chromosome I 8

As such severe genetic mutations (here duplications or deletions of entire chromosomes) can cause disease

But what about all those other disease? Is every disease genetic? How can we determine that?

Human adult height:

Sir Francis Galton showed in 1889 a clear relationship between average height of parents and the height of offspring:

Original 1889 figure

Cleaned-up figure

Human adult height:

- Strongly genetically determined, but to what extent?
- Can be calculated by a Pearson correlation coefficient

(invented by Francis Galton and his student Karl Pearson)

Pearson correlation coefficient

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Human adult height: example

Lude°Franke

Height father	Height mother	Average height parents	Height offspring		
180	170	175	175		
175	167	171	165		
192	165	179	180		
202	173	188	192		
169	163	166	170		
173	169	171	173		
182	164	173	179		
174	186	180	180		

Adult height is strongly heritable, so genetic variation must play an important role.

Can we find the genetic variants that influence adult height?

Types of genetic disorders

Lude°Franke

Mendelian: one single mutation causes the disease.

The inheritance can be e.g. recessive or dominant

Complex: multiple genetic variants can each increase or decrease disease risk

So you will have a few unfortunate variants and a few fortunate variants. If you have many unfortunate variants, you will get ill.

Lude°Franke

Classes of genetic variants:

Number known in dbSNP / DGV

Linkage disequilibrium

Lude°Franke

SNP X and Y uncorrelated: **linkage equilibrium**

SNP X

SNP X and Y correlated: **linkage disequilibrium**

Lude°Franke

SNP X and Y correlated: **linkage disequilibrium**

Availability of genome-wide arrays in 2006 Lude°Franke

SNPs on Illumina

oligonucleotide platform

Available technique:

Oligonucleotide arrays ('DNA-chip') (e.g. Illumina or Affymetrix)

Contain > 300,000 SNPs that have been designed to capture most of the known genetic variation well.

How oligonucleotide arrays call genotypes Lude°Franke

How oligonucleotide arrays call genotypes Lude°Franke

How oligonucleotide arrays call genotypes Lude[®]Franke

nature October 2010

doi:10.1038/nature09410

Hundreds of variants clustered in genomic loci and biological pathways affect human height 180 SNPs affect Adult human height!

A full list of authors and their affiliations appears at the end of the paper.

Lude°Franke

However, each of the 180 SNPs have a very small effect on height:

Each of the SNPs explain only between ~0.3% and ~0.5% of height variation

SNP variant	Gene where SNP is located	Mutations in this gene cause					
rs1042725	HMGA2	Pygmy mice					
rs6060373	GDF5	Chondrodysplasia (abnormally short and deformed limbs); brachydactyly (short digits) DuPan syndrome; multiple synostoses syndrome.					

Adult height is strongly heritable, SNP variants in I 80 SNP variants have been found.

But together they explain only 10.5% of the variation in height!

What is going on? We do not understand yet!

Lude°Franke

Healthy people

AA: 6 people (24%)
AC: 13 people (52%)
CC: 6 people (24%)
↓
A allele freq: 50%

C allele freq: 50%

Sick people

AA: 1 person (4%)AC: 8 people (32%)CC: 16 people (64%)

A allele freq: 20% C allele freq: 80%

Seven years of GWAS studies

Gene atlas

										6,054 disease associations
Age-	related macular degeneration	4	5	6	7	8	9	10	11	12
13	14 15	16	17	20	05	20	21	22		Y

Celiac disease: common (1% prevalence) small intestinal inflammatory condition induced by dietary wheat, rye and barley.

June 2007

genetics

A genome-wide association study for celiac disease identifies risk variants in the region harboring *IL2* and *IL21*

David A van Heel¹, Lude Franke^{2,17}, Karen A Hunt^{1,17}, Rhian Gwilliam^{3,17}, Alexandra Zhernakova², Mike Inouye³, Martin C Wapenaar⁴, Martin C N M Barnardo⁵, Graeme Bethel³, Geoffrey K T Holmes⁶, Con Feighery⁷, Derek Jewell⁸, Dermot Kelleher⁷, Parveen Kumar¹, Simon Travis⁹, Julian RF Walters¹⁰, David S Sanders¹¹, Peter Howdle¹², Jill Swift¹³, Raymond J Playford¹, William M McLaren³, M Luisa Mearin^{14,15}, Chris J Mulder¹⁶, Ross McManus⁷, Ralph McGinnis³, Lon R Cardon⁸, Panos Deloukas³ & Cisca Wijmenga^{2,4} March 2008

genetics

Newly identified genetic risk variants for celiac disease related to the immune response

Karen A Hunt¹, Alexandra Zhernakova², Graham Turner³, Graham A R Heap¹, Lude Franke², Marcel Bruinenberg⁴, Jihane Romanos⁴, Lotte C Dinesen⁵, Anthony W Ryan³, Davinder Panesar¹, Rhian Gwilliam⁶, Fumihiko Takeuchi⁶, William M McLaren⁶, Geoffrey K T Holmes⁷, Peter D Howdle⁸, Julian R F Walters⁹, David S Sanders¹⁰, Raymond J Playford¹, Gosia Trynka⁴, Chris J J Mulder¹¹, M Luisa Mearin^{12,13}, Wieke H M Verbeek¹¹, Valerie Trimble³, Fiona M Stevens¹⁴, Colm O'Morain³, Nicholas P Kennedy³, Dermot Kelleher³, Daniel J Pennington¹, David P Strachan¹⁵, Wendy L McArdle¹⁶, Charles A Mein¹⁷, Martin C Wapenaar⁴, Panos Deloukas⁶, Ralph McGinnis⁶, Ross McManus^{3,18}, Cisca Wijmenga^{2,4,18} & David A van Heel^{1,18}

2010

genetics

2011

Celiac disease as example

Lude°Franke

The start:

778 unrelated UK celiac patients 1,422 unrelated UK controls

Genotyping: Illumina Hap300 Infinium oligonucleotide array

Calling of genotypes:

In-house developed calling algorithm (IllumiTyper)

Chip and SNP quality control:

- Individual and SNP call rate > 95%
- HWE Exact P-Value > 0.001
- -MAF > 0.05

Related samples:

- Duplicates removed
- Stratification assessed using Eigenstrat

Association analysis: Allele frequency P-Value test (chi² test, I df)

Quantile-quantile plot:

4q27 locus:

Lude°Franke

Population stratification

Lude°Franke

St. Pietersberg

Groningen, Amsterdam, Utrecht, Rotterdam

Schiphol

Population stratification

Lude°Franke

Large overlap between immune related diseases

Ponce and Wijmenga, Annual Reviews of Genomics and Human Genetics, in press

CGH / Oligonucleotide Arrays

Investigate intensity of probes

Oligonucleotide Arrays:

Take advantage of genotypes

Allele A Intensity

Autosomal biallelic SNP

 $\textbf{Allele A Intensity} \rightarrow$

 $\textbf{Allele A Intensity} \rightarrow$

Lude°Franke

Autosomal biallelic SNP

 $\textbf{Allele A Intensity} \rightarrow$

Lude°Franke

Lude°Franke

Autosomal biallelic SNP

Chromosome X biallelic SNP

Lude°Franke

Lude°Franke

Lude°Franke

Lude°Franke

Genotype Assignment, Step 1:

00 Assignment (parameter α). AA/A0, BB/B0 and AB Identification

Lude°Franke

Genotype Assignment, Step 1:

00 Assignment (parameter α). AA/A0, BB/B0 and AB Identification

Genotype Assignment, Step 2:

Discrimination between AA and A0 and between BB and B0 (parameter β)

Lude°Franke

Genotype Assignment, Step 1:

00 Assignment (parameter α). AA/A0, BB/B0 and AB Identification

Genotype Assignment, Step 2:

Discrimination between AA and A0 and between BB and B0 (parameter β)

Hardy-Weinberg: Disequilibrium

Genotype Assignment, Step 3: Maximum likelihood optimization of HWE by adjusting α and β parameters

Linkage disequilibrium again

Lude°Franke

TriTyper

Lude°Franke

1,880 identified common human deletions

Lude°Franke

Association analysis in coeliac disease

Van Heel, Franke *et al*, A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21, Nature Genetics 2007

