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Experimental design

— We often compare two groups with each other (e.g. clinical trial: treat
patients with drug or placebo, ascertain whether drug has an effect)

— The traditional scientific strategy is to change one parameter (the
independent variable) and assess whether that variable has an effect
on the dependent variable

— However, when dealing with genomic data we typically measure
thousands of parameters, we can continue testing whatever we think is
interesting.

— But how do we then correct for multiple testing?

— However, many confounders exist, but sometimes it is not even evident
they exist, can we identify them?



Multiple testing correction

Multiple testing correction



Experimental design

Controls Patients

Considerable difference

Small difference

Highly significant difference

In words:

t
variability

In an equation
(T = patients, C = controls):

vary vare
+

Ny e

_ difference of means

—> P-value



Type | and Type Il error

Actual Situation “Truth”

H, True H, False

Incorrect Decision
Type Il Error

B

Incorrect Decision CormectDecision
Rejct H, Type | Error 1-8

o

Decision

Do Not Correct Decision
Reject H, 1-a

a = P(Type I Error) p = P(Type Il Error)



Why multiple testing matters

Genomics = Lots of Data = Lots of Hypothesis Tests

A typical microarray experiment might result in performing 10,000
separate hypothesis tests. If we use a standard p-value cut-off of
0.05, we'd expect 500 genes to be deemed “significant” by chance.

In general, if we perform m hypothesis tests, what
is the probability of at least 1 false positive?

P(Making an error) =

P(Not making an error) = 1 - a

P(Not making an error in m tests) = (1 - )™
P(Making at least 1 error in m tests) = 1 - (1 - o)™



Probability of at least one false-positive

When assuming that a test with P < 0.05 is significant:
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Correcting for multiple testing

Bonferroni correction: Correct for the number of tests, by multiplying each P-
Value with the number of statistical tests (overly stringent: High probability of type 2
errors, i.e. of not rejecting the general null hypothesis when important effects exist)

Holms method:
Order the unadjusted p-values such that p/ < p2 < ... < pm

» Holm adjusted p-values are:p j =min[(m"j+1)*pj,1]
» The point here is that we don’t multiply every pi by the same factor m:

pl =10000%p [, p2 =9999*p2, ..., pm =1* pm

Many other methods exist:

- False discovery rate (FDR)

- Benjamini and Hochberg FDR

- Storey’s positive FDR

- Permutation based methods to account for correlated tests
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Batch effects

OPINION

Tackling the widespread and
critical impact of batch effects
In high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha,

Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly
and Rafael A. Irizarry
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Batch effects
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Figure 1 | Demonstration of normalization and surviving batch effects. For a published bladder
cancer microarray data set obtained using an Affymetrix platform?, we obtained the raw data for only
the normal samples. Here, green and orange represent two different processing dates. a | Box plot of
raw gene expression data (log base 2). b | Box plot of data processed with RMA, awidely used preproc-
essing algorithm for Affymetrix data’’. RMA applies quantile normalization — a technique that forces
the distribution of the raw signal intensities from the microarray data to be the same in all samples®.
c | Example of ten genes that are susceptible to batch effects even after normalization. Hundreds of
genes show similar behaviour but, for clarity, are not shown. d | Clustering of samples after normalization.
Note that the samples perfectly cluster by processing date.
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Batch effects: principal component analysis
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Principal components
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Data compression
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Batch effects in Groningen expression data

Principal component 2 Principal component 3
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Batch effects

Study description* Known variable used as a surrogate Principal components used as a surrogate Association
Surrogate* Confounding Susceptible Principal Principal Susceptible ;vnlxtt:‘:ome
(%)? features components components features
(%)! rank of rank of (%)** Significant
surrogate outcome features
(correlation)" (correlation)* (%)*
Dataset 1: gene Date 29.7 50.5 1(0.570) 1(0.649) 91.6 71.9

expression microarray,
Affymetrix (Np =22,283)

Dataset 2:gene Date 77.6 73.7 1(0.922) 1(0.668) 98.5 62.2
expression, Affymetrix
(N, =4167)

Dataset 3: mass Processing 100 5.7 2(0.344) 2(0.344) 99.7 51.7
spectrometry (Np= group
15,154)

Dataset 4: copy Date 29.2 99.5 2(0.921) 3(0.485) 99.8 08.8
number variation,

Affymetrix (Np=

045,806)

Dataset 5: copy Date 12.2 83.8 1(0.553) 1(0.137) 99.8 74.1
number variation,

Affymetrix (Np=

945,806)
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Batch effect in recent methylation paper

DNA Methylation patterns associate with genetic and gene
expression variation in HapMap cell lines:

Conclusion in paper: SNP rs|108/6043 does strongly influence
many methylation levels (affects component )
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Batch effect in recent methylation paper

CORRECTION

Open Access

Correction: DNA methylation patterns associate
with genetic and gene expression variation in

HapMap cell lines

Jordana T Bell'*", Athma A Pai', Joseph K Pickrell', Daniel J Gaffney'~, Roger Pique-Regi’, Jacob F Degner’,

Yoav Gilad'" and Jonathan K Pritchard'*

Correction

We showed in our study [1] that SNP rs10876043 in the
disco-interacting protein 2 homolog B gene (DIP2B) was
associated with the first principal component of methyla-
tion. Although the analyses and result remain unchanged,
it appears that this observation is likely due to a genotyp-
ing artifact. That is, the reported rs10876043 genotypes
differ according to HapMap Phase (cell lines genotyped in
Phase 1/2 have reported genotypes AG and GG, while
Phase 3 cell lines have genotype AA). The 1000 Genomes
data suggest the correct genotype is probably AA for all of
these YRI individuals. These genotype differences between
different phases of the HapMap Project, coupled with a
small difference in mean methylation between Phase 1/2
vs 3 cell lines appear to have produced an artifactual asso-
ciation. Other analyses in the paper controlled for the top
principal components and should therefore be robust to
this type of effect.

Acknowledgements
We thank Lude Franke and Harm-Jan Westra (Depanment of Genetics,
University Medical Centre Groningen) for bringing this to cur attention.

Reference

1. Bell JT, Pai AA, Pickrell JX Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y,
Pritchard JX: DNA methylation patterns associate with genetic and gene
expression variation in HapMap cell lines. Genome Bial 2011, 12810

doi:10.1186/gb-2011-12-6-405
Cite this article as: Bell er o/ Correction: DNA methylation patterns
associate with genetic and gene expression variation in HapMap cell

lines. Genome Biclogy 20171 12:405.




Systematic differences between cases and controls

Systematic differences between cases and controls



Systematic differences between cases and controls
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GC content
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Batch effects: 3D chromosome organization

Comprehensive Mapping of Long-Range
Interactions Reveals Folding Principles
of the Human Genome

Erez Lieberman-Aiden,™*** Nynke L. van Berkum,** Louise Williams,* Maxim Imakaev,’
Tobias Ragoczy,®’ Agnes Telling,®” Ido Amit,* Bryan R. Lajoie,” Peter ). Sabo,®

Michael O. Dorschner,® Richard Sandstrom,® Bradley Bernstein,* M. A. Bender,®

Mark Groudine,®’ Andreas Gnirke,* John Stamatoyannopoulos,® Leonid A. Mirny,%**

Eric S. Lander,***?+ Job Dekker’t

We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by
coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity
maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the
presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes.

We identified an additional level of genome organization that is characterized by the spatial segregation
of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the
chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that
enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus.
The fractal globule is distinct from the more commonly used globular equilibrium model. Our results
demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.



Batch effects: 3D chromosome organization
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Batch effects: 3D chromosome organization
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Batch effects: 3D chromosome organization
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Batch effects: 3D chromosome organization

Gene expression data Hi-C data Science paper
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Sample mix-ups

Sample mix-ups



Genetic variants can affect expression levels
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Sample mix-ups: how to identify them

SNP rs9258995 SNP rs8458
Probe HLA-A Probe VAV3
P-Value 1.39E-10 P-Value 2.77E-8
@]
@]
@]
AA AG GG AA

SNP rs11191642
Probe hsa-mir
P-Value 6.53E-10

AA AG GG AA AC CC



Sample mix-ups:What happened to our data

Assumed plate layout
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Sample mix-ups: do they happen?

eQTL datasets with mix-ups
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Comparing same samples using different platforms

Sample mix-ups present in Choy CHB + JPT population

295 unique SNP-gene 4,736 unique SNP-gene 1,170 unique SNP-gene 4,736 unique SNP-gene
combinations combinations combinations combinations
+243
| |
177 118 4618 809 361 4,375

(86) (42) (1,233) (269) (114) (1,202)



What happens when studies go wrong

Two personal experiences
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Conclusions

— Correcting for multiple testing is very important

— Confounders often exist

— It is often unknown what these confounders are

— Principal component analysis can reveal these confounders

— GC content has a major effect, both in genetic, expression, methylation
and ChlP-seq studies. Please check whether it might confound your
results

— Keep in mind, it is usually possible to correct for these confounders
— Be careful: Results that seem too good to be true, should worry you!



